Downtime in digital hospitals: An analysis of patterns and causes over 33 months

Jessica CHEN
Ying WANG and Farah MAGRABI

Graduate School of Biomedical Engineering, UNSW
Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University
“Hello, IT, have you tried turning it off and on again?”
70% of respondents reported at least one unplanned downtime lasting more than 8hrs in the previous 3yrs

Sittig et al. 2014

From 77 events detected, downtime ranged from a few minutes to 16hrs over a 4-month period

Hoot et al. 2003
To examine **patterns** and **causes** of downtime in a **hospital setting**
- 350-bed metropolitan hospital in Sydney
- Between 2010-2012, 128 reports were recorded by the hospital IT department
- 127 were unplanned downtime events
Definition of *downtime*

- A period of time when an IT system is not available or partially available
- AKA: “IT failure”, “computer downtime”, “IT outage”

“Treatments for several patients including a major trauma was delayed because admissions could not be processed; tests could not be ordered and results could not be accessed…clinics were paralysed for the whole morning”
Method

• Started with data for one year (2011)
 • downtime: minutes, percentage
 • areas affected
 • method of detection
 • classification: $\kappa = 0.69$ (moderate agreement)
Classifications

SINGLE POINT
OF FAILURE

Application
Server

POWER OUTAGE
<table>
<thead>
<tr>
<th>Element of report</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SOR ID; Start; End</td>
<td>97; 3:30; 7:30</td>
</tr>
<tr>
<td>2. Details; Details 2</td>
<td>[system ID]; All departments</td>
</tr>
<tr>
<td>3. Description</td>
<td>Switch died at around 3:30am according to alert</td>
</tr>
<tr>
<td>4. Resolution</td>
<td>Went on site at around 7:30am and replaced switch</td>
</tr>
<tr>
<td>5. Comments</td>
<td>Switch blew 3:30 and needed replacing, done at 7:30 am</td>
</tr>
<tr>
<td>6. Relevant; Outage</td>
<td>Yes; 26/10/2011</td>
</tr>
<tr>
<td>7. Restored; Status</td>
<td>26/10/2011; COMPLETE</td>
</tr>
<tr>
<td>8. Quetzal; System</td>
<td>[quetzal number]; [system ID]</td>
</tr>
<tr>
<td>Element of report</td>
<td>Example</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1. SOR ID; Start; End</td>
<td>97; 3:30; 7:30</td>
</tr>
<tr>
<td>2. Details; Details 2</td>
<td>[system ID]; All departments</td>
</tr>
<tr>
<td>3. Description</td>
<td>Switch died at around 3:30am according to alert</td>
</tr>
<tr>
<td>4. Resolution</td>
<td>Went on site at around 7:30am and replaced switch</td>
</tr>
<tr>
<td>5. Comments</td>
<td>Switch blew 3:30 and needed replacing, done at 7:30 am</td>
</tr>
<tr>
<td>6. Relevant; Outage</td>
<td>Yes; 26/10/2011</td>
</tr>
<tr>
<td>7. Restored; Status</td>
<td>26/10/2011; COMPLETE</td>
</tr>
<tr>
<td>8. Quetzal; System</td>
<td>[quetzal number]; [system ID]</td>
</tr>
</tbody>
</table>
Results and Analysis
Downtime comparing to industry

147hrs/3years

49hrs/year

25hrs/year

hospital

other industries
68% of downtime occurred during weekdays*

*Monday to Friday
68% of downtime occurred during weekdays*

*Monday to Friday
51% of downtime occurred during business hours*

*9am to 5pm
51% of downtime occurred during business hours*

*9am to 5pm
Largest cause of downtime was network-related (n=128)

- Network: 77% (n=98)
- Power: 8% (n=10)
- Software: 13% (n=17)
- Other: 2% (n=3)
Largest cause of downtime was network-related (n=128)

- Network: 77% (n=98)
- Power: 8% (n=10)
- Software: 13% (n=17)
- Other: 2% (n=3)
Most incidents affected multiple areas (n=96)

- 74% affected many areas
- 26% affected one area
Most incidents affected multiple areas (n=96)
Most incidents were detected by users (n=99)
Most incidents were detected by users (n=99)
• Downtime can affect hospitals by **delaying delivery of care**
• The greatest cause of downtime are **network-related**
• Mostly **users detect** a downtime event at the point of care
• Downtime is **greater than other industries** and likely **underestimated**
• Further studies are needed to measure the **effects on patient outcomes**
The hospital that participated and IT staff who provided data

Patient Safety Informatics Team:
Associate Prof. Farah Magrabi
Dr Ying Wang
Dr Mi-Ok Kim
Thank You

Jessica Chen
B Mechatronics Engineering/M Biomedical Engineering,
Graduate School of Biomedical Engineering, UNSW
jessica.a.chen@student.unsw.edu.au