Classification of Movement of People with Parkinson’s Disease Using Wearable Inertial Movement Units

Dr. David Ireland
Parkinson’s Disease

• Parkinson’s disease is a progressive movement disorder caused by degeneration of dopamine generating cells.

Movement Symptoms:
• Tremors
• Slowness
• Impaired gait

Non-Movement Symptoms:
• Speech / Language disorders
• Cognitive impairment
• Fatigue
• Psychotic episodes
Remote Monitoring Research

- Movement & mobility
- Wellbeing
- Voice & Language
- Medication
- Activity / Mood Diaries
- Legal & ethics
Remote Patient Monitoring Platform

1. Person with Parkinson’s:
 - Carrying smartphone
 - Wearing sensors

2. Use of interactive apps
 - Bluetooth
 - Smart phone with apps
 - HTTPS

3. Bluetooth room “beacons”

4. Clinical Care System
 - Clinical Data Warehouse
 - Clinician Portal
 - HTTPS

5. Web browser
 - Clinical Care Team
 - Collaboration

6. Clinical Research System
 - De-identified Research Data Warehouse
 - Researcher Portal
 - HTTPS

7. Web browser
 - Researcher

Face-to-face clinical feedback, advice and instruction

Smartphone enabled clinical feedback, advice and instruction (Video, Voice, SMS & in-app messaging)
Wearable *Shimmer* Devices

- Tri-Axial Gyroscope & Accelerometer
- Bluetooth / SD-Card Logging
Research Questions

1. What sensors are the most significant for estimating Parkinson’s disease severity?

2. What wearable location is the most significant for estimating Parkinson’s disease.
Data Collection

• Participants attended a single physiotherapy assessment

• MDS-UPDRSIII Score was evaluated for each participant.

• Five Shimmer devices were placed on the legs, arms & back.
Participants

• 14 People with mild to moderate symptoms
• Two experienced freezing of gait
• Two had deep brain stimulation
• Five had fallen in 12 months prior
• Two had observable tremors
Assessments

• Six-Minute Walk (Indoors / Outdoors)
• Up & Go (Motor, Cognitive)
• Sit to Stand
• Functional tasks
Empirical Mode Decomposition

• Real world produces complex signals with many components

• EMD Breaks the signal into sub-components called **Intrinsic Mode Functions**
Feature Extraction From the IMFs

1. Amplitude
2. Energy
3. Wavelength
Best Sensors & Features

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Position</th>
<th>Axis</th>
<th>IMF Mode</th>
<th>Feature</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyroscope</td>
<td>Right Leg</td>
<td>x</td>
<td>1</td>
<td>Amplitude-Min (Mean)</td>
<td>0.80</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Right Leg</td>
<td>x</td>
<td>1</td>
<td>Amplitude-Max (Mean)</td>
<td>-0.80</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Left Arm</td>
<td>y</td>
<td>3</td>
<td>Energy</td>
<td>-0.79</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Back</td>
<td>y</td>
<td>2</td>
<td>Energy</td>
<td>-0.78</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Left Arm</td>
<td>x</td>
<td>1</td>
<td>Amplitude-Max (Var.)</td>
<td>-0.77</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Left Arm</td>
<td>x</td>
<td>1</td>
<td>Energy</td>
<td>-0.77</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Left Arm</td>
<td>x</td>
<td>1</td>
<td>Amplitude-Max (Var.)</td>
<td>-0.76</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Back</td>
<td>y</td>
<td>1</td>
<td>Amplitude-Max (Var.)</td>
<td>-0.75</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Back</td>
<td>y</td>
<td>1</td>
<td>Energy</td>
<td>-0.75</td>
</tr>
</tbody>
</table>
Hypotheses

• People with greater motor symptom severity have a less powerful heel strike motion.

• People with greater motor symptom generally have smaller/slower movements particular of the legs & back.
Support Vector Machine Prediction

![Graph showing MDS-UPDRS for different participants with real and predicted values.]
Present Work

• In-home monitoring
• Algorithms for predicting:
 1. Falls
 2. Freezing
 3. Off-times
• Algorithms for automated assessing of physiotherapy tasks
Thank you

Australian E-Health Research Centre
Dr. David Ireland

t +61 7 3253 3604
e d.ireland@csiro.au
w www.csiro.au